13 resultados para Folate

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Folylpolyglutamate synthetase, which is responsible for the addition of a polyglutamate tail to folate and folate derivatives, is an ATP-dependent enzyme isolated from eukaryotic and bacterial sources, where it plays a key role in the retention of the intracellular folate pool. Here, we report the 2.4-Å resolution crystal structure of the MgATP complex of the enzyme from Lactobacillus casei. The structural analysis reveals that folylpolyglutamate synthetase is a modular protein consisting of two domains, one with a typical mononucleotide-binding fold and the other strikingly similar to the folate-binding enzyme dihydrofolate reductase. We have located the active site of the enzyme in a large interdomain cleft adjacent to an ATP-binding P-loop motif. Opposite this site, in the C domain, a cavity likely to be the folate binding site has been identified, and inspection of this cavity and the surrounding protein structure suggests that the glutamate tail of the substrate may project into the active site. A further feature of the structure is a well defined Ω loop, which contributes both to the active site and to interdomain interactions. The determination of the structure of this enzyme represents the first step toward the elucidation of the molecular mechanism of polyglutamylation of folates and antifolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To examine whether antibiotics are indicated in treating uncomplicated acute sinusitis and, if so, whether newer and more expensive antibiotics with broad spectra of antimicrobial activity are more effective than amoxycillin or folate inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-affinity folate receptors (FRs) are expressed at elevated levels on many human tumors. Bispecific antibodies that bind the FR and the T-cell receptor (TCR) mediate lysis of these tumor cells by cytotoxic T lymphocytes. In this report, conjugates that consist of folate covalently linked to anti-TCR antibodies are shown to be potent in mediating lysis of tumor cells that express either the alpha or beta isoform of the FR. Intact antibodies with an average of five folate per molecule exhibited high affinity for FR+ tumor cells but did not bind to FR- tumor cells. Lysis of FR+ cell lines could be detected at concentrations as low as 1 pM (approximately 0.1 ng/ml), which was 1/1000th the concentration required to detect binding to the FR+ cells. Various FR+ mouse tumor cell lines could be targeted with each of three different anti-TCR antibodies that were tested as conjugates. The antibodies included 1B2, a clonotypic antibody specific for the cytotoxic T cell clone 2C; KJ16, an anti-V beta 8 antibody; and 2C11, an anti-CD3 antibody. These antibodies differ in affinities by up to 100-fold, yet the cytolytic capabilities of the folate/antibody conjugates differed by no more than 10-fold. The reduced size (in comparison with bispecific antibodies) and high affinity of folate conjugates suggest that they may be useful as immunotherapeutic agents in targeting tumors that express folate receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potocytosis is an endocytic process that is specialized for the internalization of small molecules. Recent studies on the uptake of 5-methyltetrahydrofolate by the folate receptor have suggested that the glycosyl-phosphatidylinositol anchor on this protein causes it to cluster and be internalized by caveolae instead of coated pits. To test this hypothesis directly, we have constructed a chimeric folate receptor that has the glycosyl-phosphatidylinositol anchor replaced with the transmembrane domain and cytoplasmic tail of the low density lipoprotein receptor. The cells with wild-type receptors delivered 5-methyltetrahydrofolate to the cytoplasm more rapidly than did cells expressing the chimeric receptor. This suggests that efficient delivery to the cytoplasm depends on caveolae. In sharp contrast to cells with wild-type folate receptors, cells internalizing folate by clathrin-coated pits were unable to decrease vitamin uptake when they were either folate replete or confluent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduction of 5,10-methylenetetrahydrofolate (methyleneTHF), a donor for methylating dUMP to dTMP in DNA synthesis, to 5-methyltetrahydrofolate (methylTHF), the primary methyl donor for methionine synthesis, is catalyzed by 5,10-methylenetetrahydrofolate reductase (MTHFR). A common 677 C → T polymorphism in the MTHFR gene results in thermolability and reduced MTHFR activity that decreases the pool of methylTHF and increases the pool of methyleneTHF. Recently, another polymorphism in MTHFR (1298 A → C) has been identified that also results in diminished enzyme activity. We tested whether carriers of these variant alleles are protected from adult acute leukemia. We analyzed DNA from a case–control study in the United Kingdom of 308 adult acute leukemia patients and 491 age- and sex-matched controls. MTHFR variant alleles were determined by a PCR-restriction fragment length polymorphism assay. The MTHFR 677TT genotype was lower among 71 acute lymphocytic leukemia (ALL) cases compared with 114 controls, conferring a 4.3-fold decrease in risk of ALL [odds ratio (OR = 0.23; 95% CI = 0.06–0.81]. We observed a 3-fold reduction in risk of ALL in individuals with the MTHFR 1298AC polymorphism (OR = 0.33; 95% CI = 0.15–0.73) and a 14-fold decreased risk of ALL in those with the MTHFR 1298CC variant allele (OR = 0.07; 95% CI = 0.00–1.77). In acute myeloid leukemia, no significant difference in MTHFR 677 and 1298 genotype frequencies was observed between 237 cases and 377 controls. Individuals with the MTHFR 677TT, 1298AC, and 1298CC genotypes have a decreased risk of adult ALL, but not acute myeloid leukemia, which suggests that folate inadequacy may play a key role in the development of ALL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological basis or mechanism whereby folate supplementation protects against heart and neural tube defects is unknown. It has been hypothesized that the amino acid homocysteine may be the teratogenic agent, since serum homocysteine increases in folate depletion; however, this hypothesis has not been tested. In this study, avian embryos were treated directly with d,l-homocysteine or with l-homocysteine thiolactone, and a dose response was established. Of embryos treated with 50 μl of the teratogenic dose (200 mM d,l-homocysteine or 100 mM l-homocysteine thiolactone) on incubation days 0, 1, and 2 and harvested at 53 h (stage 14), 27% showed neural tube defects. To determine the effect of the teratogenic dose on the process of heart septation, embryos were treated during incubation days 2, 3, and 4; then they were harvested at day 9 following the completion of septation. Of surviving embryos, 23% showed ventricular septal defects, and 11% showed neural tube defects. A high percentage of the day 9 embryos also showed a ventral closure defect. The teratogenic dose was shown to raise serum homocysteine to over 150 nmol/ml, compared with a normal level of about 10 nmol/ml. Folate supplementation kept the rise in serum homocysteine to ≈45 nmol/ml, and prevented the teratogenic effect. These results support the hypothesis that homocysteine per se causes dysmorphogenesis of the heart and neural tube, as well as of the ventral wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (Gi, Gq, Gs, and Gβγ) target discrete cell surface microdomains. Gq specifically concentrates in caveolae, whereas Gi and Gs concentrate much more in lipid rafts marked by GPI-anchored proteins (5′ nucleotidase and folate receptor). Gq, apparently without Gβγ subunits, stably associates with plasmalemmal and cytosolic caveolin. Gi and Gs interact with Gβγ subunits but not caveolin. Gi and Gs, unlike Gq, readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize Gq preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, Gq, Gi, and Gs all concentrate in lipid rafts as a complex with Gβγ. Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the Gq-caveolin complex without Gβγ for trafficking, signaling, and mechanotransduction are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low folate intake as well as alterations in folate metabolism as a result of polymorphisms in the enzyme methylenetetrahydrofolate reductase (MTHFR) have been associated with an increased incidence of neural tube defects, vascular disease, and some cancers. Polymorphic variants of MTHFR lead to enhanced thymidine pools and better quality DNA synthesis that could afford some protection from the development of leukemias, particularly those with translocations. We now report associations of MTHFR polymorphisms in three subgroups of pediatric leukemias: infant lymphoblastic or myeloblastic leukemias with MLL rearrangements and childhood lymphoblastic leukemias with either TEL-AML1 fusions or hyperdiploid karyotypes. Pediatric leukemia patients (n = 253 total) and healthy newborn controls (n = 200) were genotyped for MTHFR polymorphisms at nucleotides 677 (C→T) and 1,298 (A→C). A significant association for carriers of C677T was demonstrated for leukemias with MLL translocations (MLL+, n = 37) when compared with controls [adjusted odd ratios (OR) = 0.36 with a 95% confidence interval (CI) of 0.15–0.85; P = 0.017]. This protective effect was not evident for A1298C alleles (OR = 1.14). In contrast, associations for A1298C homozygotes (CC; OR = 0.26 with a 95% CI of 0.07–0.81) and C677T homozygotes (TT; OR = 0.49 with a 95% CI of 0.20–1.17) were observed for hyperdiploid leukemias (n = 138). No significant associations were evident for either polymorphism with TEL-AML1+ leukemias (n = 78). These differences in allelic associations may point to discrete attributes of the two alleles in their ability to alter folate and one-carbon metabolite pools and impact after DNA synthesis and methylation pathways, but should be viewed cautiously pending larger follow-up studies. The data provide evidence that molecularly defined subgroups of pediatric leukemias have different etiologies and also suggest a role of folate in the development of childhood leukemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P-glycoprotein (Pgp), a transmembrane efflux pump encoded by the MDR1 gene, transports various lipophilic drugs that enter the cell by passive diffusion through the lipid bilayer. Pgp-expressing multidrug-resistant cell lines are not usually cross-resistant to a hydrophilic antifolate methotrexate (MTX). MTX enters cells primarily through a folate carrier, but passive diffusion becomes the primary mode of MTX uptake in carrier-deficient cells. To test if a deficiency in MTX carrier would allow Pgp to confer resistance to MTX, a MTX carrier-deficient cell line (3T6-C26) was infected with a recombinant retrovirus expressing the human MDR1 gene. The infected 3T6-C26 cells showed increased survival in MTX relative to uninfected cells. Multistep selection of the infected cells with vinblastine led to increased Pgp expression and a concomitant increase in resistance to MTX. MTX resistance of Pgp-expressing 3T6-C26 cells was reduced by Pgp inhibitors, including a Pgp-specific monoclonal antibody UTC2. In contrast, the expression and the inhibition of Pgp had no effect on MTX resistance in 3T6 cells with normal carrier-mediated MTX uptake. Thus, a deficiency in the MTX carrier enables Pgp to confer resistance to MTX, suggesting that hydrophilic compounds may become Pgp substrates when such compounds enter cells by passive diffusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human genome contains many repeated DNA sequences that vary in complexity of repeating unit from a single nucleotide to a whole gene. The repeat sequences can be widely dispersed or in simple tandem arrays. Arrays of up to 5 or 6 nt are known as simple tandem repeats, and these are widely dispersed and highly polymorphic. Members of one group of the simple tandem repeats, the trinucleotide repeats, can undergo an increase in copy number by a process of dynamic mutation. Dynamic mutations of the CCG trinucleotide give rise to one group of fragile sites on human chromosomes, the rare folate-sensitive group. One member of this group, the fragile X (FRAXA) is responsible for the most common familial form of mental retardation. Another member of the group FRAXE is responsible for a rarer mild form of mental retardation. Similar mutations of AGC repeats give rise to a number of neurological disorders. The expanded repeats are unstable between generations and somatically. The intergenerational instability gives rise to unusual patterns of inheritance--particularly anticipation, the increasing severity and/or earlier age of onset of the disorder in successive generations. Dynamic mutations have been found only in the human species, and possible reasons for this are considered. The mechanism of dynamic mutation is discussed, and a number of observations of simple tandem repeat mutation that could assist in understanding this phenomenon are commented on.